# **Chronic Fatigue Syndrome and its Related Disorders**

September 13, 2014

Peter C. Rowe, MD

Sunshine Natural Wellbeing Foundation Professor of Chronic Fatigue and Related Disorders

**Professor of Pediatrics** 

Johns Hopkins University



#### Presenter Disclosure Information

Peter C. Rowe, MD

No relationships to disclose

### CFS and its related disorders

- CFS definition and epidemiology
- Recent research findings of note
- Treating related disorders
  - Orthostatic intolerance
  - Joint hypermobility and the paradox of movement restrictions
  - Delayed milk protein intolerance

### Fatigue in CFS

- Self-reported persistent or relapsing fatigue lasting  $\geq$  6 consecutive months, which:
- Is of new or definite onset (not lifelong)
- Is not the result of ongoing exertion
- Is not substantially alleviated by rest
- Results in substantial reduction in previous levels of occupational, educational, social, or personal activities

## Symptom Criteria For CFS 4 of 8 needed for diagnosis

- unrefreshing sleep
- postexertional malaise lasting > 24 hours
- self reported impairment in short-term memory or concentration
- sore throat
- tender cervical or axillary glands
- muscle pain
- multijoint pain without swelling
- headaches of a new type, pattern, severity

#### Clinical Evaluation

- History, physical, mental status exam
- Screening labs:
  - CBC, ESR/CRP, Chemistries, TSH
  - Urinalysis
  - Most would now add iron studies, vitamin B12, celiac screening, and, in endemic areas, labs for Lyme and other tick-borne infections
- Other labs as clinically indicated

### Prevalence of Fukuda Criteria Symptoms

Nijhof SL, Pediatrics 2011;127:e1169-1175 National survey of 4.1% of Dutch General Practitioners

| Unrefreshing sleep            | 84% |
|-------------------------------|-----|
| Post-exertional malaise > 24h | 80% |
| Memory/concentration probs    | 79% |
| Headaches                     | 78% |
| Muscle pain                   | 59% |
| Joint pain                    | 48% |
| Sore throat                   | 43% |
| Tender lymph nodes            | 31% |

### Prevalence of Other (Non-Fukuda) Symptoms

Johns Hopkins Pediatric CFS Cohort Study SCL-90 symptom reports of at least moderate severity

| Dizziness                  | 70% |
|----------------------------|-----|
| Nausea                     | 56% |
| Hot/cold temp fluctuations | 48% |
| Numbness & tingling        | 48% |
| Heart racing               | 43% |
| Shortness of breath        | 37% |
| Chest pain                 | 37% |
| Diminished appetite        | 24% |

### Ruling in CFS

- Post-exertional malaise lasting 1-3 days is more common in CFS than depression
- Post-exertional worsening of symptoms extends past fatigue to include cognitive dysfunction, lightheadedness, pain.
- Cognitive problems common (difficulty with attention, short-term memory)

### Helpful clinical questions

- What happens when you try to do normal activities that you tolerated before?
   (e.g., reading, studying, walking 20 min, exercising)
- How long can you be upright before having to sit?
- What activities have you had to limit since you got sick? (school, after-school activities, shopping)
- How often do you get out of the house?
- How many chores can you manage in a day, or on consecutive days? If you do more, what are the consequences?

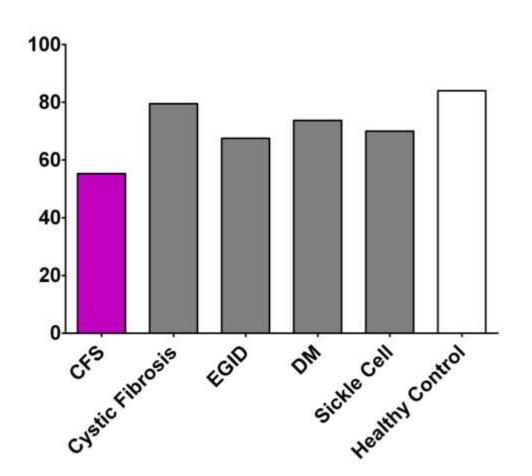
### Clinical Discriminators of Fatigue

| Condition             | Clinical pearl                                        |
|-----------------------|-------------------------------------------------------|
| Neuromuscular         | Weakness                                              |
| OSA                   | Daytime somnolence, snoring                           |
| Heart/lung disease    | SOB, effort intolerance                               |
| Adrenal insufficiency | ↓ BP on orthostatics, ↓ Na. Bronzing, ↓ K less common |
| Chiari I              | Occipital HA, brisk DTRs                              |

## Red Flags for Serious Conditions other than CFS

- Weight loss
- Fevers
- Sleep paralysis, cataplexy
- Clubbing
- Erythematous, swollen joints
- Abnormalities on neuro exam




### CFS and its related disorders

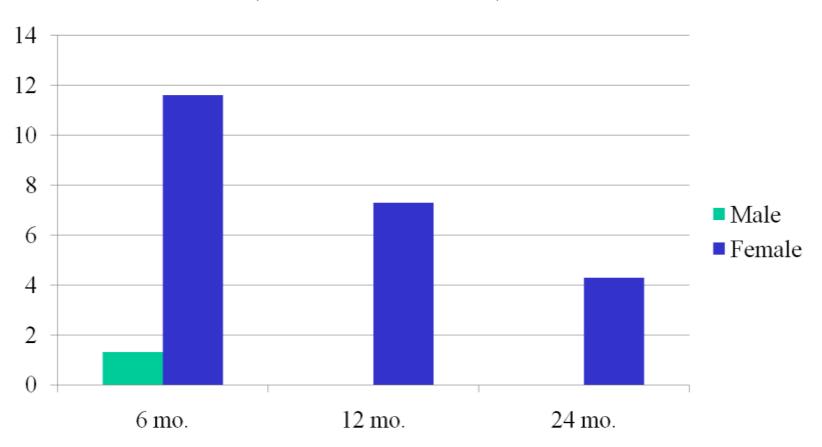
- CFS definition and epidemiology
- Recent research findings of note
- Treating related disorders
  - Orthostatic intolerance
  - Joint hypermobility and the paradox of movement restrictions
  - Delayed milk protein intolerance

#### **CFS**

- Affects previously active individuals in all SES strata
- Female to male ratio 2:1 to 5:1
- Uncommon before 10 yrs; peaks at 40-49
- Prevalence estimated at 4/1,000 adults
- Heterogeneous precipitating & perpetuating factors
- More common in MZ than DZ twins
- Proven treatments are limited: CBT and graded exercise help, but effects are modest
- Severity in adults comparable to MS, CHF; common cause of prolonged school absence in adolescents
- Estimated \$24 billion in losses annually

### Health-related QOL: CFS vs. other pediatric chronic conditions

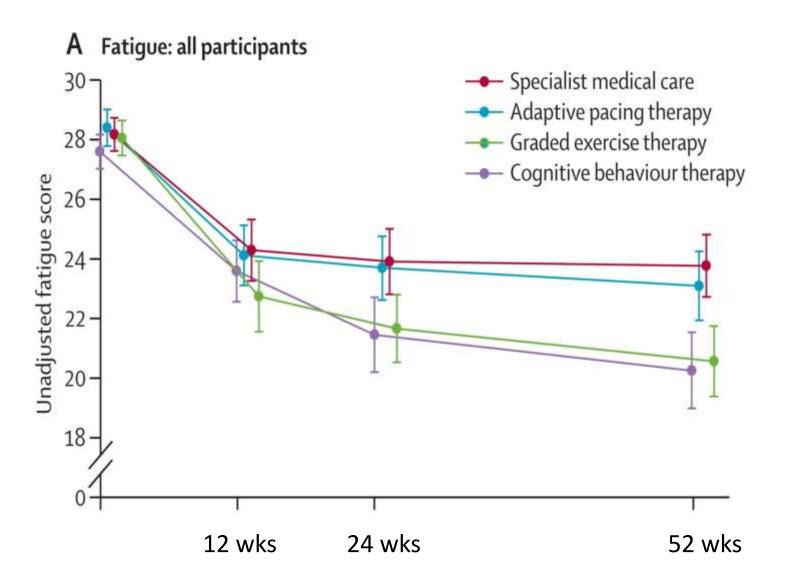



CFS data from Johns Hopkins Pediatric CFS Cohort Study; other conditions from Ingerski LM, et al., J Pediatrics 2010;156:639-44

### Infection and Immunity

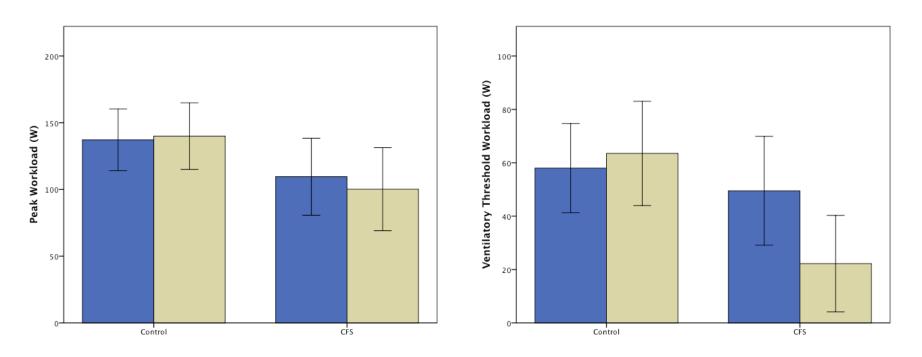
- Debate about whether infection acts as a "hit and run" phenomenon, triggering some other physiologic dysfunction but not directly causing symptoms, or whether persistent symptoms are due to active infection
- After EBV, Q-fever, other illnesses, ~10% get CFS;
   main risk factor is severity of the initial infection
- Evidence of active infection thus far not detected in chronic state

### 301 adolescents with infectious mono: % with CFS over time

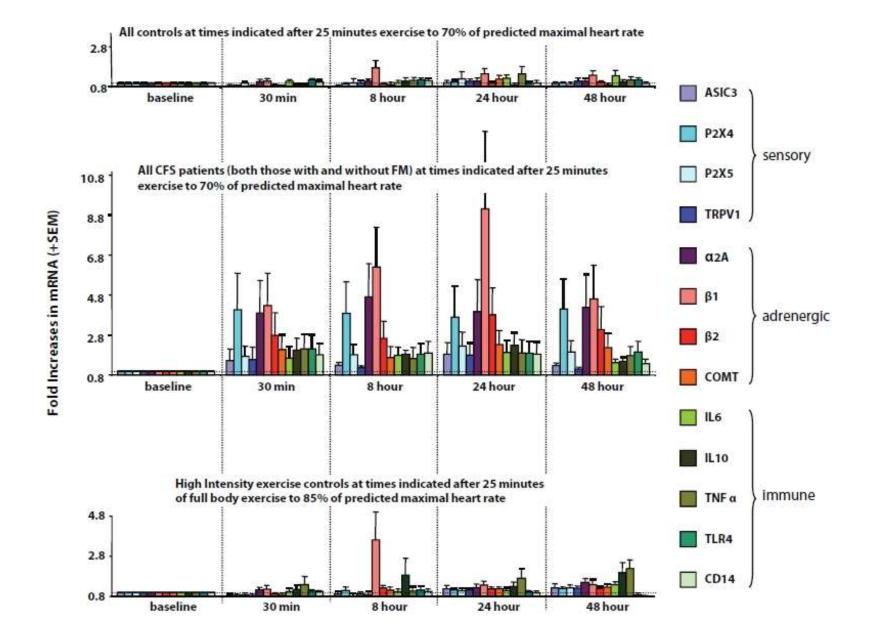

Katz BZ, et al. Pediatrics 2009;124:189-93.



### Pediatric CFS Impact: School Attendance


Crawley E, Sterne JAC. Arch Dis Child 2009;94:752-6

- 211 with CFS, 69% F, median age 14.6
- Evaluated in CFS specialist clinic in UK
- 56.9% attended school 20% or less
- Those with better physical function were more likely to attend school (OR 1.70; 95% CI, 1.36-2.13)
- No association between attendance rates and anxiety, gender, age, FH of ME/CFS




White PD et al. PACE trial. Lancet 2011

Measurements of workload at peak exercise (A) and at the ventilatory threshold (B) in individuals with CFS and control subjects obtained during cardiopulmonary exercise test #1 (blue bars) and cardiopulmonary exercise test #2 (gold bars).



Snell CR, Stevens SR, Davenport TE, Van Ness JM. Physical Therapy 2014



Light AR, et al. Myalgia and Fatigue: Translation from Mouse Sensory Neurons to Fibromyalgia and Chronic Fatigue Syndromes. Editors In: Kruger L, Light AR. eds. Translational Pain Research: From Mouse to Man. Boca Raton, FL: CRC Press; 2010.

### CFS and its related disorders

- CFS definition and epidemiology
- Recent research findings of note
- Treating related disorders
  - Orthostatic intolerance
  - Joint hypermobility and the paradox of movement restrictions
  - Delayed milk protein intolerance

### Is neurally mediated hypotension an unrecognised cause of chronic fatigue?

Peter C Rowe, Issam Bou-Holaigah, Jean S Kan, Hugh Calkins

Lancet 1995; 345: 623-24

### The Relationship Between Neurally Mediated Hypotension and the Chronic Fatigue Syndrome

Issam Bou-Holaigah, MD; Peter C. Rowe, MD; Jean Kan, MD; Hugh Calkins, MD

JAMA 1995;274:961-7

### Symptoms of Orthostatic Intolerance

Lightheadedness Dyspnea

Syncope Chest Discomfort

Diminished concentration Palpitations

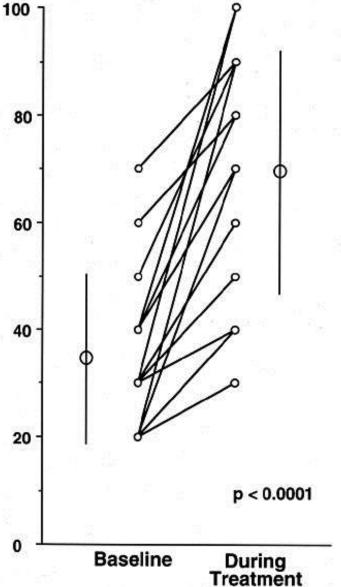
Headache Tremulousness

Blurred vision Anxiety

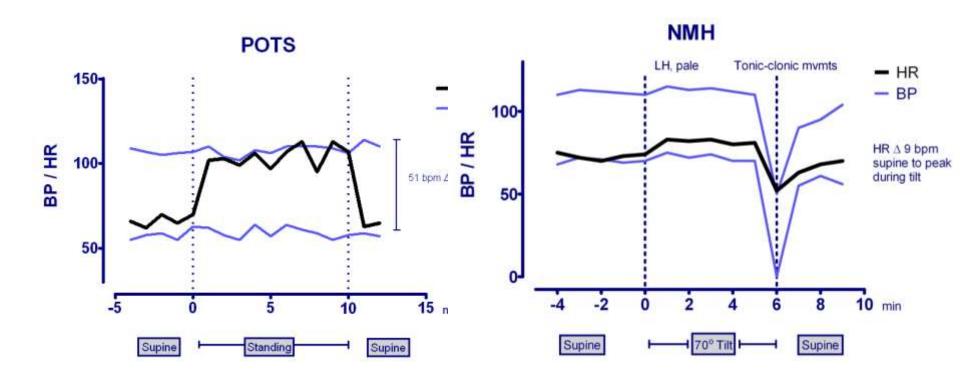
Fatigue Nausea

Exercise intolerance Nocturia

### Dependent acrocyanosis



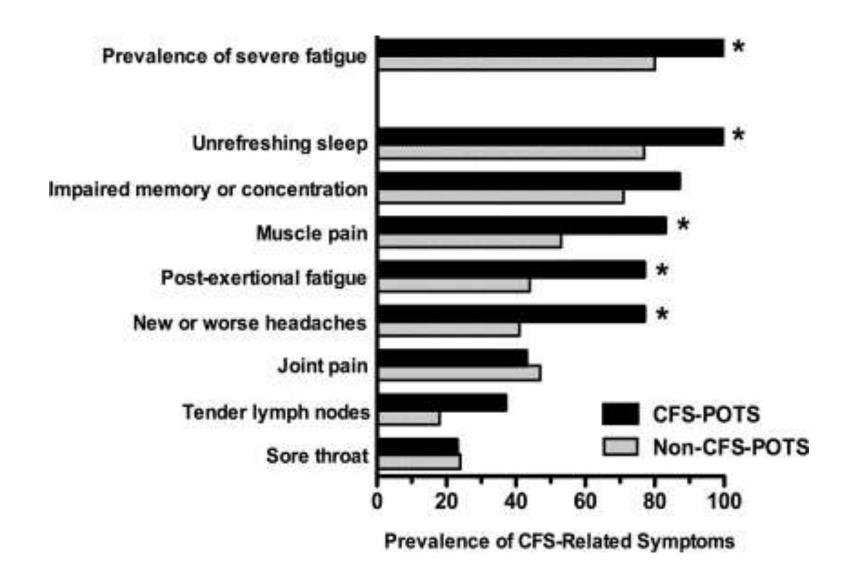




Response of CFS subjects to open treatment of orthostatic intolerance

JAMA 1995;274:961-7.

# General Sense of Well Being




### Common forms of orthostatic intolerance in pediatric CFS



**POTS:** 30 bpm increase (40 bpm in adolescents) in HR <u>with</u> <u>symptoms</u>, or HR > 120 bpm, in first 10 min of standing or HUT

#### CFS and POTS in adults

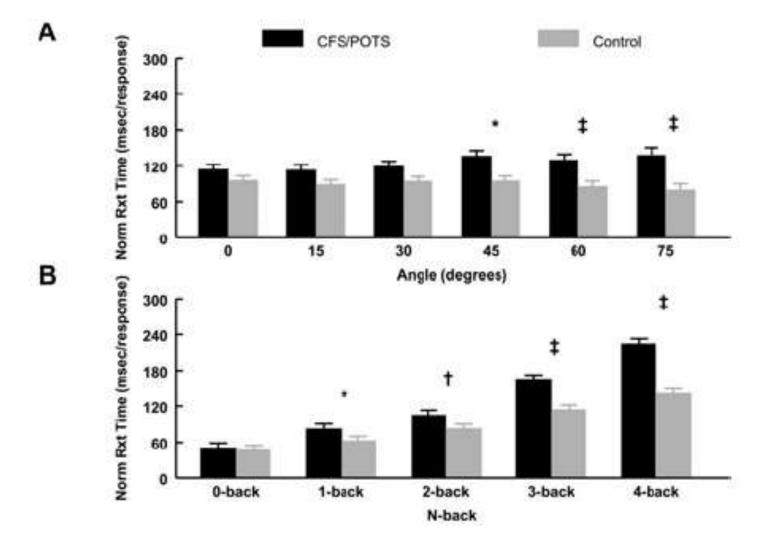
Okamoto LE, et al. Clin Sci 2012;122:183-92





Clinical Science (2012) 122, 227-238 (Printed in Great Britain) doi:10.1042/CS20110241

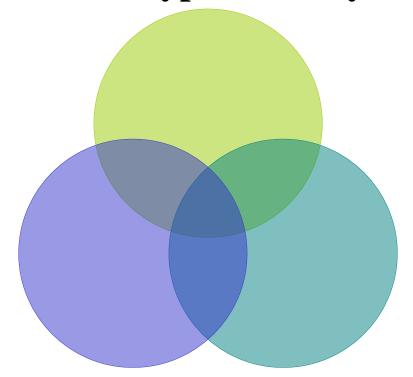
227


# Increasing orthostatic stress impairs neurocognitive functioning in chronic fatigue syndrome with postural tachycardia syndrome

Anthony J. OCON\*, Zachary R. MESSER†, Marvin S. MEDOW\*† and Julian M. STEWART\*†‡

\*Department of Physiology, New York Medical College, Valhalla, NY, U.S.A., †Department of Pediatrics, New York Medical College, Valhalla, NY, U.S.A., and ‡Department of Medicine, New York Medical College, Valhalla, NY, U.S.A.

### N-back testing


- Tests working memory, concentration, attention, information processing
  - O-back: subject responds if the character on screen is the one they were told to expect
  - 1-back: subject responds when the current character is the same as displayed "1" back
  - 2-back: same character as was displayed 2 characters back



### CFS and its related disorders

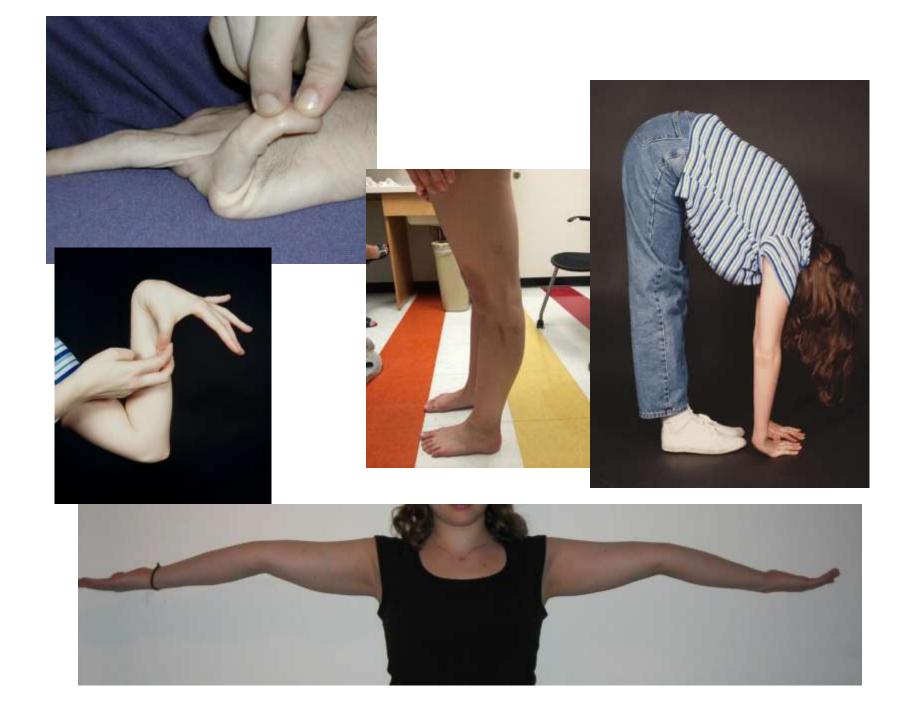
- CFS definition and epidemiology
- Recent research findings of note
- Treating related disorders
  - Orthostatic intolerance
  - Joint hypermobility and the paradox of movement restrictions
  - Delayed milk protein intolerance

EDS/
Joint hypermobility



**Orthostatic Intolerance** 

**CFS** 


# CFS Associated With EDS and Orthostatic Intolerance

Among 100 adolescents in the CFS clinic at JHH over a 1 year period, we identified 12 with EDS (P < 0.01)

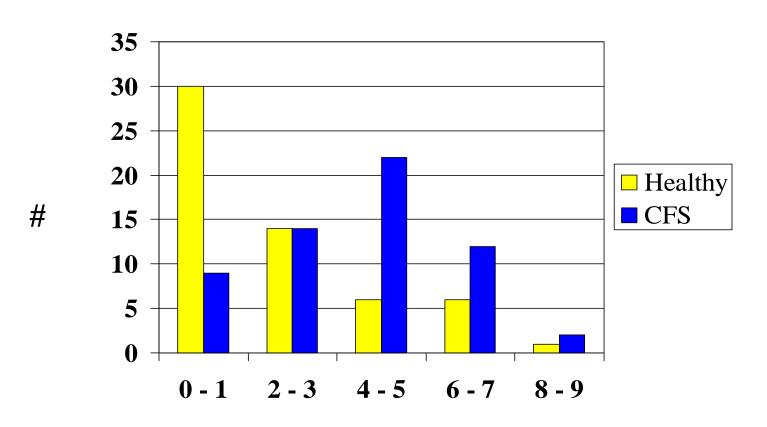
6 classical-type, 6 hypermobile-type EDS 12/12 with OI (9 NMH, 10 POTS)

Rowe PC, Barron DF, Calkins H, Maumanee IH, Tong PY, Geraghty MT.

J Pediatr 1999;135:494-9














## Beighton Joint Hypermobility Scores in 58 Adolescents With CFS And 58 Healthy Controls



Beighton scores

Barron, Geraghty, Cohen, Violand, Rowe. J Pediatr 2002;141:421-5

### Observations in Adolescents with CFS

 Increased prevalence of postural abnormalities and movement restrictions

### Abnormal postures





### Restricted Ankle Dorsiflexion





Healthy

**CFS** 

### Restricted Prone Knee Bend





Healthy

**CFS** 

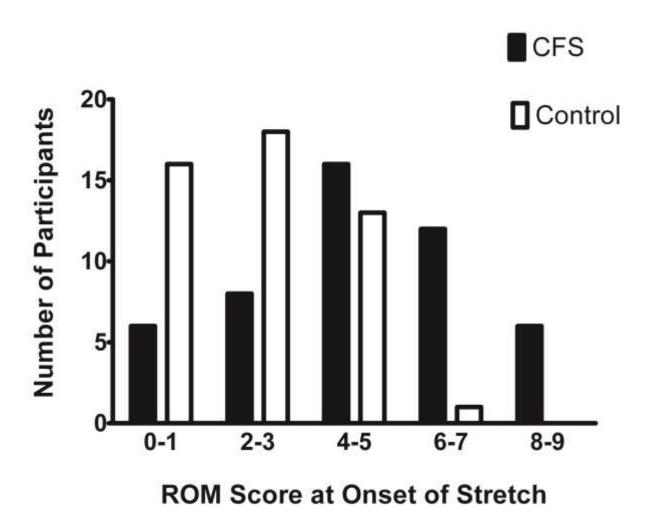
### Restricted Straight Leg Raise







**CFS** 


## ROM in 48 CFS subjects 10-23 yrs old matched on sex and Beighton score (Rowe PC, et al. J Pediatrics 2014)

| Maneuver               | CFS<br>% | Controls<br>% | P<br>Wilcoxon<br>signed ranks |
|------------------------|----------|---------------|-------------------------------|
| Slump Left Leg < 170   | 13       | 8             | .48                           |
| Slump Right Leg < 170  | 10       | 2             | .10                           |
| ADF Left < 95          | 15       | 0             | <.01                          |
| ADF Right < 95         | 13       | 0             | <.02                          |
| SLR Left < 45 onset    | 69       | 38            | .001                          |
| SLR Right < 45 onset   | 71       | 31            | .001                          |
| ULTT Left < 170 onset  | 71       | 56            | .13                           |
| ULTT Right < 170 onset | 65       | 31            | .001                          |
| PKB Left < 130 onset   | 46       | 35            | .41                           |
| PKB Right < 130 onset  | 38       | 33            | .66                           |
| Prone press-up         | 52       | 17            | .002                          |

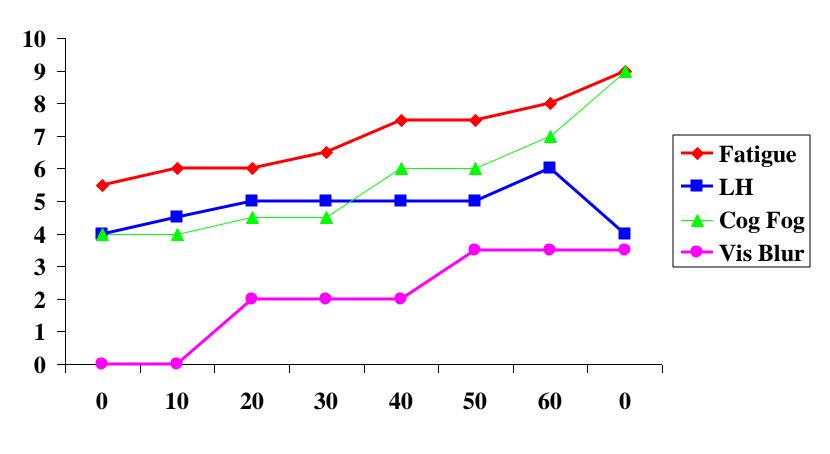
# Abnormal ROM in 48 pairs matched on gender and joint hypermobility score

(Composite score range: 0-11)

| ROM score           | CFS,<br>median score<br>(range) | Controls,<br>median score<br>(range) | P<br>Wilcoxon<br>signed<br>ranks |
|---------------------|---------------------------------|--------------------------------------|----------------------------------|
| At onset of stretch | 5 (0-9)                         | 2 (0-7)                              | <.001                            |
| At end-range        | 2 (0-7)                         | 0 (0-3)                              | <.001                            |



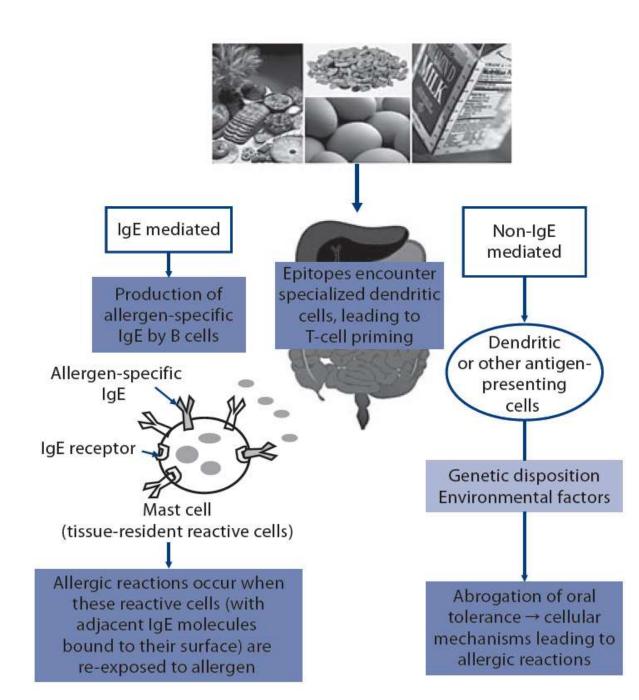
Marden CL, Flaherty M, Jasion SE, Cranston EM, Johns AS, Fan J, Fontaine KR, Violand RL. Impaired range of motion of limbs and spine in chronic fatigue syndrome. J Pediatrics 2014


#### **Observations in Adolescents with CFS**

 Increased prevalence of postural abnormalities and movement restrictions

 CFS symptoms can be reproduced by selectively placing mechanical tension on the neural tissues

## Symptom Changes with SLR over 12 minutes in Adolescent with CFS


#### **Severity**



**Degrees of SLR** 

### CFS and its related disorders

- CFS definition and epidemiology
- Recent research findings of note
- Treating related disorders
  - Orthostatic intolerance
  - Joint hypermobility and the paradox of movement restrictions
  - Delayed milk protein intolerance



Ann Nutr Metab 2011;59(suppl 1):8–18 DOI: 10.1159/000334145

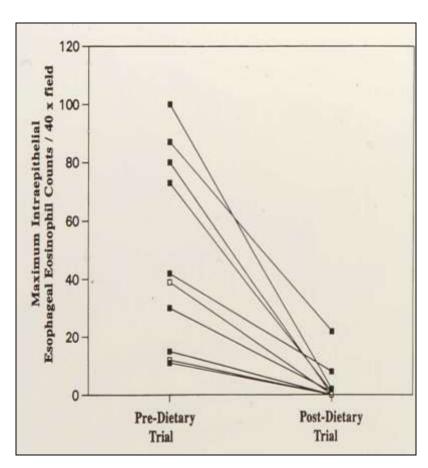
# Non-IgE mediated food allergy: 3 cardinal features

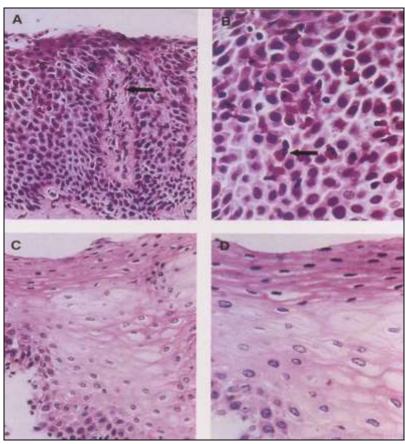
- Recurrent vomiting or GER
- 2. Recurrent epigastric or abdominal pain
- 3. Food refusal, picky eating, early satiety

Other: aphthous ulcers, unexplained fevers, diarrhea or constipation, headache, myalgias, fatigue, asthma

Kelly KJ et al. Gastroenterology 1995;109:1503-12

### Non-IgE mediated food allergy


- Reaction to suspected food usually delayed by 2-6 hours
- IgE level, prick skin tests, RAST tests often negative
- Eosinophilic colitis or esophagitis only the tip of the iceberg


# Treatment of non-IgE mediated food allergy

- Strict avoidance of offending food proteins (Milk > soy > egg)
- 2. Amino-acid formula (Neocate, EO28, Elecare) sometimes needed for infants, those with many allergies
- 3. Multivitamins, Ca supplements

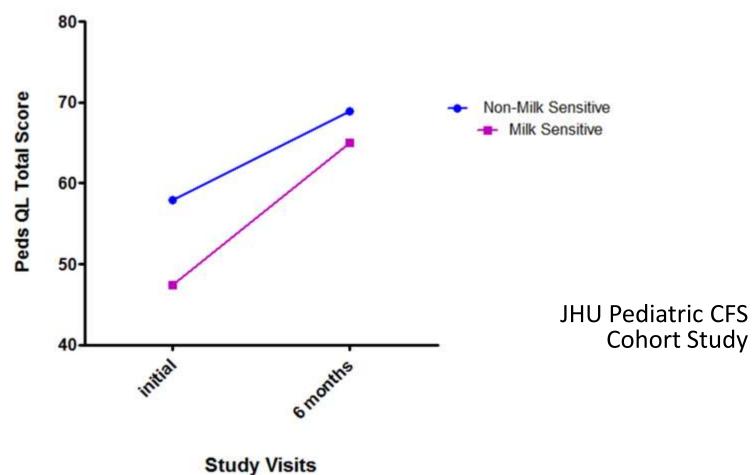
## Improvements in esophageal eosinophils after amino acid formula diet

Kelly KJ et al. Gastroenterology 1995;109:1503-12





### Non-IgE mediated food allergy


Diagnosis supported by clinical response to diet, recurrence of symptoms 2-6 hours after inadvertent dietary challenge, confirmed by DBPCOFC

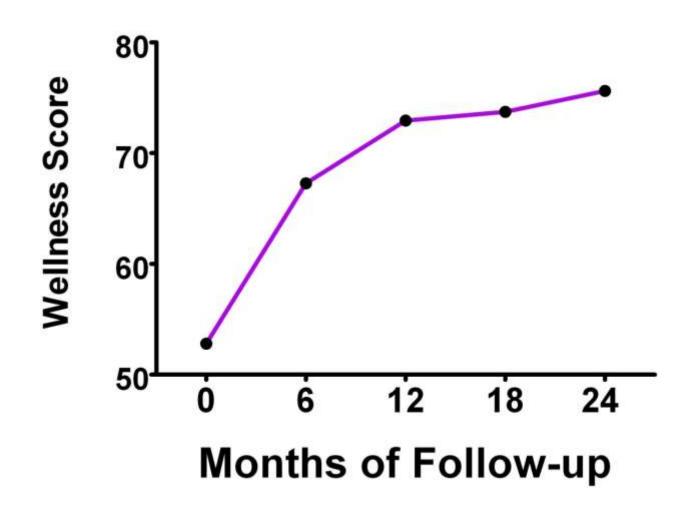
## Delayed milk protein hypersensitivity: data from the Johns Hopkins CFS cohort

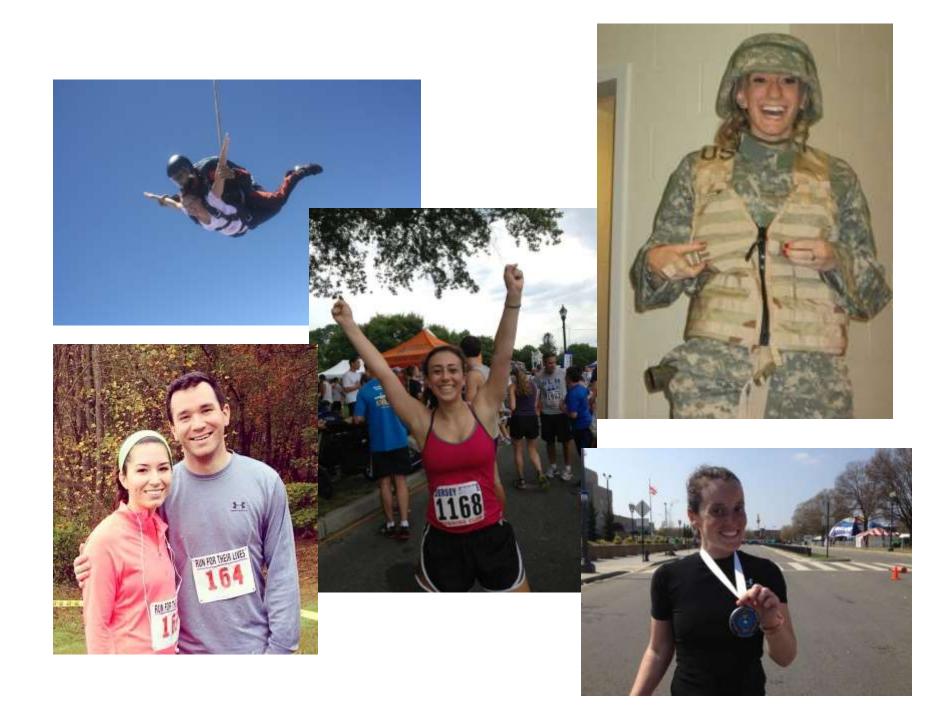
- 55 subjects with CFS
- Followed for 2 years and treated with multimodal therapy
- Subjects with delayed hypersensitivity to milk protein compared to those without milk sensitivity on history, current symptoms, and quality of life

| Baseline feature              | Milk<br>sensitive<br>(N=17) | Not milk<br>sensitive<br>(N=38) | P     |
|-------------------------------|-----------------------------|---------------------------------|-------|
| Increased vomiting in infancy | 47%                         | 13%                             | .01   |
| Early satiety                 | 69%                         | 26%                             | <.01  |
| Epigastric pain               | 75%                         | 26%                             | <.01  |
| GER                           | 69%                         | 29%                             | <.01  |
| Aphthous ulcers               | 56%                         | 8%                              | <.001 |
| Worse with milk               | 43%                         | 10%                             | .01   |
| Peds QL score                 | 47.4                        | 58.0                            | .01   |

# Response to multi-modal therapy (including milk-free diet in those with milk sensitivity)




#### Conclusions


- Adolescents and young adults with CFS have a higher than expected (31%) prevalence of DMPH
- Specific symptoms significantly more common among those with DMPH include reflux, aphthous ulcers, early satiety, and abdominal/epigastric pain

#### Conclusions

- DMPH contributes to worse health-related
   QOL in those with CFS
- Treatment with a milk-free diet and multimodal CFS therapy was associated with improvement in the magnitude of differences in HRQOL after 6 months
- DMPH thus deserves further attention as a treatable contributor to CFC symptoms and HRQOL in CFS

## Johns Hopkins CFS Cohort Study: Outcomes with individualized treatment





#### Resources

- ME/CFS: a primer for clinical practitioners, 2014: Downloaded from <u>www.iacfsme/org</u>
- The CFIDS Association webinars are an excellent source of information on various topics related to CFS: <a href="http://solvecfs.org/">http://solvecfs.org/</a>
- Search "Dr. Peter Rowe" on YouTube for webinar on "Managing Orthostatic Intolerance."
- Dysautonomia International is a non-profit group. This site has fact sheets, exercise guides, and regular research updates. Talks from conferences are available: www.dysautonomiainternational.org
- Co-cure is a patient-run CFS information exchange: <a href="http://www.co-cure.org/">http://www.co-cure.org/</a>

#### **ACKNOWLEDGEMENTS**

- Grants from NIAID, DoD, CFIDS Association of America
- Sunshine Natural Wellbeing Foundation (endowed Chair)
- Volunteer RA Colleen Marden
- Summer students (John Fan, Alli Johns, Marissa Flaherty, Jocelyn Ray, Samantha Jasion, Erica Cranston)
- Many families and patients:
  - Special thanks to the following:
     Boies, Cornell, Smith, Caldwell, Newbrand, Kelly, Kiely,
     McFerron
  - Megan Lauver, Hannah Vogel